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Abstract

This paper deals with the characterisation of the aerodynamic and aeroelastic behaviour of a flat plate under

uncertain flow conditions. The incoming mean flow velocity is described in terms of its probabilistic distribution, and

the Reynolds number is consequently treated as a random variable. The objective of the study is to give a probabilistic

description of the quantities which characterise the aerodynamics and aeroelasticity of a flat plate, i.e., steady forces,

friction coefficient and velocity in the wake for the first and flutter derivatives for the second. Classical techniques such

as Monte Carlo and quasi-Monte Carlo methods seem to be too expensive, in that they require many costly wind tunnel

tests or numerical simulations of the steady and unsteady flow field around the motionless and moving plate. An

efficient Multi-Element generalised Polynomial Chaos approach allows a significant reduction of the required number

of realisations, making its cost affordable for real-world applications. The proposed method gives sufficiently accurate

approximations of the probabilistic distributions of the desired quantities. Several examples of different representations

of the stochastic outputs are given.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Streamlined and bluff body aerodynamics and aeroelasticity are usually studied through experiments, mathematical

models or a combination of the two, in which the parameters that define the models and the experimental set-up are

considered to be known. This knowledge may come from other experiments or from theoretical considerations, but it is

in general assumed as deterministic. Both aerodynamic and aeroelastic behaviour can be deeply affected by small

variations of some of these parameters. Nevertheless, model or set-up parameters usually vary randomly, so that the

aerodynamic and aeroelastic behaviour of a structure should be in general assumed as stochastic.

The mathematical methods which aim at the rigourous estimation of stochastic behaviour go under the name of

uncertainty quantification methods. All of these methods require the uncertain parameters to be modelled through the

introduction of input random variables that define the so-called stochastic problem. The law or some statistics of these
e front matter r 2009 Elsevier Ltd. All rights reserved.
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random variables must be known, in order to recover analogous information about the quantities that describe the

aerodynamic and aeroelastic behaviour. Clearly, these quantities will be random variables themselves, and will be called

output random variables. The most intuitive methods in the family of uncertainty quantification are the classical Monte

Carlo (MC) and quasi-Monte Carlo methods (Caflisch, 1998), which make use of quasi-random number generation or

properly defined point sets in order to explore the whole parameter space of the problem. A solution of the

corresponding deterministic problem is associated with each realisation of the input random variables. A statistical

analysis of these solutions provides the solution to the stochastic problem. The number of required realisations,

however, may be prohibitively large. When the interest is in obtaining certain statistical quantities of the solution, such

as the mean value, variance, kurtosis, or probability level sets, other techniques can be exploited, such as perturbation

methods or Neumann-series expansion methods [see, e.g., Kleiber and Hien (1992), Deb et al. (2001), Schwab and

Todor (2003)]. A more general approach is based on the global expansion of the random variables which define the

stochastic problem into a basis of ‘‘elementary’’ random variables and the corresponding representation of the solution

in terms of such variables. The most popular examples of such expansions are the Karhunen–Loève expansions [see,

e.g., Loève (1977)], which involve the eigenfunctions of the covariance kernel of the random input, and the generalised

Polynomial Chaos (gPC) expansions (Wiener, 1938; Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002), which

exploit the classical technology of weighted orthogonal polynomials. This approach allows the stochastic problem to be

transformed into a corresponding deterministic problem in higher dimension. In the latter, the images of the basis

random variables represent the new independent variables. The domain for these new variables is a tensor product of

intervals of the real line. The high dimension of the new deterministic problem makes it necessary to re-examine and

suitably tune classical solution techniques. The most common approaches to discretisation in the new variables rely on

Galerkin projection methods (Xiu and Karniadakis, 2003), which can be used together with numerical integration

techniques (Canuto and Kozubek, 2007), and on collocation methods (Babuška et al., 2007; Mathelin et al., 2005;

Canuto and Fransos, 2009), which offer the opportunity of solving a number of corresponding deterministic

realisations, as in MC methods, using a deterministic solver as a black-box.

In his review paper about uncertainty quantification in aeroelasticity, Pettit (2004) has pointed out that small

uncertainties in the system parameters can significantly affect the aeroelastic system response. The main sources of

uncertainties in aeroelastic systems include randomness in material properties, structural dimensions, structural

boundary conditions and external excitations Beloiu et al. (2005), including incoming flow features. During the last

decade, the methods described above have been adopted in the flutter analysis to include the quantification of the effects

of system parametric uncertainty. For instance, MC methods have been used by Lindsley et al. (2006) to study the

periodic response of nonlinear plate equations under supersonic flow subject to uncertain modulus of elasticity and

structural boundary conditions, and by Poirel and Price (2003) to study the bending-torsion flutter under turbulent flow

conditions with a linear structural model. Recent applications of the Polynomial Chaos expansion methods to flutter

analysis are reviewed in Sarkar et al. (2009). In the same paper, the effect of parametric uncertainty on the stall flutter

behaviour of a pitching airfoil is studied by applying both the Galerkin projection method and the collocation one: the

plate-like structure is modelled as a 2-D rigid airfoil with torsional degree-of-freedom and the stall aerodynamic

moment is computed using a semi-empirical dynamic stall model. Three structural parameters are assumed to be

uncertain, their effect on the stall flutter system response being outlined in an earlier deterministic study by Sarkar and

Bijl (2008).

The collocation method in the framework of the gPC approach is followed in this paper to quantify the effects of an

uncertain incoming mean flow velocity. This quantity is modelled as a Weibull random variable, based on on-site

experimental measurements, so that a random Reynolds number results. The effects of such an input random variable

are investigated for both the aerodynamics and the aeroelasticity of the classical flat plate. As regards the aerodynamic

behaviour, the dependence of the plate performance on the flow Reynolds number is well known. Several studies, e.g.,

Sun and Boyd (2004), highlighted the compressibility effects that arise at Reo10 and that the main aerodynamic

properties show high variations in the 10oReo103 range. In the 103oReoRecr range, the variations in the boundary

layer shape and in the velocity profile in the wake are described by the classical Blasius and Goldstein analytical

solutions respectively (Schlichting, 1979). Finally, for higher Re than the critical Recr � 5� 105 value, transition to

turbulence occurs in the boundary layer. Flat plate aeroelasticity is also affected by Re variations: one of the first

attempts to deterministically evaluate the Reynolds number effects on the flutter derivatives of a symmetrical airfoil was

made by Halfman (1952) and then more recently by Le Maı̂tre et al. (2003). Reynolds number effects for such a

streamlined body were the object of several deterministic investigations in a previous work by Bruno and Fransos

(2008). A flat plate with an aspect ratio B=D ¼ 400 is considered in the present paper, along with a Reynolds number

which varies through the whole ½0;þ1Þ range. The specific uncertainty quantification method employed in the paper is

described in Section 2, while the technology employed for the solution of the single deterministic realisations, which was

introduced in a previous work (Fransos and Bruno, 2006), is briefly recalled in Section 3. The stochastic
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characterisation of the steady flow around the motionless plate represents the first analysis step and is given in Section 4.

Finally, the unsteady flowaround the moving plate and the resulting flutter derivatives are described in terms of random

variables in Section 5. The efficiency of the proposed method is discussed in terms of reduced computational costs.
2. Mathematical methods of uncertainty quantification

Quantifying the uncertainty in some outputs of a system, due to the presence of uncertainty in the inputs and/or in

the parameters which characterise the system itself, implies describing both the inputs and the outputs as random

variables. The whole procedure proposed to obtain the approximate forms of the output moments and PDF is

summarised in the flowchart in Fig. 1. Each block is detailed in the following.

Let us introduce a complete probability space ðO;F;PÞ, where O is the outcome space,F is the set of events andP is

a probability measure. When uncertainty is present, i.e., the inputs and parameters of a system depend on the outcome

o in the outcome space O, the classical representation of a deterministic dynamic system (Fig. 2(a)) must be modified in

order to include this dependence (block 1, Fig. 2(b)). A single deterministic system corresponds to each single fixed

outcome o, i.e., to each realisation.

Let us introduce a generic output random variable Z, for instance the output variable oðt;oÞ, e.g., the drag coefficient,

of a stochastic aerodynamic system, or the transfer function hðt;oÞ of a stochastic aeroelastic system; Z depends on the

outcome o of a set of random parameters that describe the input and the system itself (as well as on other physical
� = outcome of
a random set-up

�(�) = output
random variable

expansion techniques (e.g. gPC)

{�i(y)}i = 0,...,M−1

choice of the collocation nodes (e.g. from quadrature)

y(i)

i = 0,...,M−1

black-box deterministic solver

�i = �̃(y(i))
i = 0,...,M−1

interpolation

approximate PDF approximate moments

1. mathematical model of a stochastic dynamical system
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Fig. 1. Uncertainty quantification via gPC flow chart.
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variables, such as time, space, etc. which will not explicitly appear hereafter). The previous relationship can therefore be

described by the map

o/ZðoÞ. (1)

The analysis of (1) could be better afforded by introducing a dependence of the output random variable on a set

of Q independent random variables Y ðoÞ ¼ fY 1ðoÞ;Y 2ðoÞ; . . . ;Y QðoÞg, with zero mean and unit variance (block 2),

so that

ZðoÞ ¼ Z̃ðY 1ðoÞ;Y 2ðoÞ; . . . ;Y QðoÞÞ ¼ Z̃ðY ðoÞÞ. (2)

The random variables Y q, q ¼ 1; . . . ;Q, are called input random variables. In many cases, the parameters which describe

the stochastic system can be naturally related to input random variables with the desired properties. When this is not

possible, or when the laws of these parameters are known only through some of their statistics, in particular their

covariance functions, the Karhunen–Loève (Loève, 1977) transform provides the mathematical tool to achieve this

goal. One can expand Z along an infinite sequence of independent variables Y ðoÞ ¼ fY 1ðoÞ;Y 2ðoÞ; . . . ;Y qðoÞ; . . .g,
which is then truncated to a finite number, say Q, of terms.

In the following, we will rewrite Eq. (1) as

o/Y ðoÞ/Z̃ðY ðoÞÞ, (3)

and we concentrate on the second map which is in fact a (deterministic) function of real variables. At the same time, the

first map in Eq. (3) is completely described by the knowledge of the laws of the input random variables. Posing

y ¼ Y ðoÞ, (4)

i.e., posing yq ¼ Y qðoÞ for q ¼ 1; . . . ;Q, with yq ranging in some interval Iq � R, allows us to transform the stochastic

dependence of the output random variable upon the random parameters of the system into a deterministic dependence

of a function upon a set of real independent variables, i.e.,

y/Z̃ðyÞ. (5)

Here the interval Iq can be viewed both as the image of the random variable Y q and as the domain of the deterministic

map in the qth dimension.

Let us assume that the input random variables Y q each admit a density rq. A product density r ¼
NQ

q¼1rq, i.e.,

rðyÞ ¼
QQ

i¼1 rqðyqÞ, for the vector of the input random variables Y immediately follows from independence. The

probabilistic moments of the output random variable become deterministic integrals weighted by the density, as

E½Zp� ¼

Z
I

rðyÞZ̃pðyÞdy, (6)

where I ¼
QQ

q¼1 Iq is the so-called stochastic domain.

Once the laws of the input random variables are known, an efficient method must be employed to relate them to the

output random variables in order to obtain the desired statistics of the latter. The most intuitive of these methods is

represented by the classical MC approach (Caflisch, 1998), which is based on pseudo-random number generation: a set

of realisations of the input random variables is generated according to their laws, a set of realisations of the output

random variables is obtained through the corresponding deterministic systems and statistics are computed on the last

set.

As an alternative, both the input and the output random variables can be represented through a (possibly infinite)

linear combination of properly chosen ‘‘elementary’’ random variables (block 3); this approach allows an explicit
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representation of the output random variables to be made, from which their moments and probability distribution can

be obtained. The choice of the set of elementary random variables can dramatically influence the number of realisations

required to obtain a sufficiently precise approximation of the output random variables. The expansions based on the

(generalised) Polynomial Chaos approach, gPC (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002) exploit the

classical technology of the weighted orthogonal polynomials. This leads to a very efficient choice of the required

realisations whenever the map (5) is smooth. Such a kind of expansion generalises the classical Wiener (1938) approach

which is based on an expansion in terms of Gaussian basis random variables. The form of the Gaussian density

immediately leads to the use of Hermite polynomials, which are orthogonal with respect to it. When different laws are

chosen for the basis random variables, as for gPC, different families of polynomials are introduced in order to

guarantee orthogonality with respect to the corresponding density.

Interest is thus posed on giving an approximate representation of the random variable Z. Classical results ensure that
there always exists a family of polynomials

fjðqÞk gk2N,

which is orthonormal with respect to the weight function rq. When this family is not one of the classical families of

orthogonal polynomials (such as Legendre, Chebyshev, Hermite), i.e., when the density of the input random variables is

not equal to the weight associated with a closed-form orthogonality relationship, approximate knowledge of the

coefficients defining the three-term orthogonality recurrence relationship can still be obtained (Gautschi, 2004).

Next, through tensorisation, we obtain an orthonormal family of multivariate polynomials,

fjkgk2K; K ¼ NQ with jkðyÞ ¼
YQ
q¼1

jðqÞkq
ðyqÞ,

which forms the so-called (generalised) Polynomial Chaos. Thus, the gPC expansion of Z̃ reads

Z̃ðyÞ ¼
X
k2K

Z̃kjkðyÞ. (7)

In view of the numerical treatment of random variables through their chaos representation, a truncation of the latter is

introduced, say

Z̃M ðyÞ ¼
XM�1
i¼0

ZiCiðyÞ, (8)

where Ci ¼ jk for some k ¼ kðiÞ 2K and M is the cardinality of a finite-dimensional orthonormal basis of a space of

Q-variate polynomials. One possible choice is to introduce the space W P
Q of the Q-variate polynomials of total degree at

most P, which leads to

M ¼
Qþ P

Q

 !
.

The coefficients Zi of the truncated gPC expansion can be obtained by interpolation of the point-wise values of Z̃
obtained from a set of M realisations fyðiÞgi¼0;...;M�1 (block 4). This set is usually chosen as the set of nodes of a Gaussian

or quasi-Gaussian quadrature rule. When the gPC expansion is made in terms of a nonclassical family of orthonormal

polynomials, a nonclassical Gaussian quadrature rule can be obtained through numerical approximations (Gautschi,

2004). Gaussian quadrature is optimal in the sense of the highest possible polynomial exactness. When subsequent levels

of approximations are required, for instance to evaluate convergence of the approximation procedure, a family of

nested quadrature rules is however preferred, because of the reduction of the necessary expensive computations

corresponding to each quadrature node. Among the nested quadrature families, Gauss–Patterson rules (Patterson,

1968) are once again optimal in the polynomial exactness sense. Each point-wise value Z̃ðyðiÞÞ can be obtained both

through experimental tests and through computational simulations: the deterministic relationship between a single

random input realisation and the corresponding random output can be considered as a black-box (block 5).

The approximate moments of the output random variable Z can be directly obtained from the coefficients of the

truncated gPC expansion. At the same time, an approximate form of the Z probability density function (PDF) can be

computed from the gPC interpolation (block 6). A possible method to achieve this goal is an a posteriori MC method: a

set of realisations of the input random variables is obtained through quasi-random number generation. A sample of

values of the output random variable then follows from the interpolation function. Finally, statistical approaches can

be used to obtain an approximate probability density function from this sample.
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The efficiency of the method comes from the properties of the orthogonal polynomial expansions: the spectral

convergence leads to an exponential error reduction with respect to the polynomial degree, i.e., err / expð�gPÞ. As a

comparison, let us consider the classical form of the MC approach: the error depends on the number N of realisations as

err / 1=
ffiffiffiffiffi
N
p

. For instance, if a single input random variable is present, i.e., Q ¼ 1, and an error err�10�3 is required,

the gPC expansion needs M ¼ Pþ 1�3 log 10=g realisations, while the MC approach needs N�106 realisations. This

advantage clearly decreases with the increase of the stochastic dimension Q, as the error of the MC does not depend on it

and a more sophisticated form of the gPC approach must be employed to reduce the so-called curse of dimensionality.

The gPC approach introduced above makes use of a global expansion of the output random variables, i.e., an

expansion which is the same over the whole stochastic domain I. On the other hand, an irregular or strongly varying

dependence of the output upon the input variables would cause undesired oscillations in the global expansion. In these

cases, a stochastic domain decomposition should be preferred, by defining gPC local expansions on subsets of I. The

local expansions are then combined to return to a global representation of the output. This leads to the so-called Multi-

Element generalised Polynomial Chaos, ME-gPC (Wan and Karniadakis, 2006b). A decomposition of the stochastic

domain I ¼
QQ

q¼1 ½aq; bq� is introduced:

I ¼
SL
l¼1

Jl ;

Jl ¼ ½al;1; bl;1� � � � � � ½al;Q; bl;Q�;

measureðJl1 \ Jl2 Þ ¼ 0; l1al2;

8>>><
>>>:

(9)

which leads to a decomposition of the outcome space. A new random variable Y ðlÞ can be locally defined, subject to a

conditional PDF,

r̂ðyðlÞjwJl
¼ 1Þ ¼

rðyðlÞÞ
PðwJl

¼ 1Þ
, (10)

in each random element Jl . A local polynomial approximation Z̃M
l ðy

ðlÞÞ can then be introduced for each random element

Jl , using an orthogonal system fjðlÞk ðy
ðlÞÞg, with respect to the local conditional PDF r̂. The approximation of the entire

random field can finally be recovered from the local approximations as

Z̃LðyÞ ¼
XL

l¼1

Z̃M
l ðyÞwJl

ðyÞ ¼
XL

l¼1

XMl�1

i¼0

ZðlÞi CðlÞi ðyÞwJl
ðyÞ. (11)

The entire ME-gPC approximation procedure can be represented in a flowchart similar to the one in Fig. 1, with the

blocks from 3 to 6 repeated for each stochastic element Jl , and a final global solution reconstruction step before the

approximate PDF and moments of the output random variables are obtained.
3. Deterministic evaluation of the aerodynamic and aeroelastic behaviour

The so-called black-box solver (block number 5 in the gPC flowchart in Fig. 1) depends on the application of interest.

The aerodynamic application exclusively requires a computational model devoted to the simulation of the fluid flow

around the obstacle. The aeroelastic application instead needs an additional component, that is, the identification

procedure adopted to determine the flutter derivatives using the obtained computational results.

As regards the first common component, the incompressible, unsteady, 2-D laminar flow is modelled through the

Arbitrary Lagrangian–Eulerian (ALE) version (Nomura and Hughes, 1992) of the classical Navier–Stokes equations. It

is worth pointing out that the adopted flow model is not suitable for Reo10 or Re45� 105, when compressibility and

turbulence effects take place. From a general point of view, different flow models could be adopted in the black-box

solver if required by the Re values, i.e., by the choice of the considered collocation nodes. Nevertheless, the application

carried out in the present study only involves collocation nodes in the laminar range, where the adopted flow model

applies. Dirichlet conditions are imposed on the velocity at the inlet as well as Neumann conditions on the stress tensor

at the outlet. No-slip conditions are retained at the plate wall, along with impulsive initial conditions in the inside of the

fluid domain. The motion of the plate boundary, i.e., of the fluid boundary, is imposed a priori following the smoothed

ramp motion of the rotational centre of the plate. As the computational domain boundary depends on time, the

computational grid needs to be modified according to the boundary motion (dynamic mesh) (Batina, 1989).

A spring analogy method is employed to this aim. The approximate numerical solution of the equations is provided

through the Finite Volume Method (FVM), (Ferziger and Peric, 2002), using FLUENTs commercial software.
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Advancement in time is accomplished using the first-order implicit Euler scheme. The cell-centre values of the variables

are interpolated at face locations using a second-order central difference scheme for the diffusive terms. The

interpolation of the convection terms is accomplished by means of the Quadratic Upwind Interpolation for Convective

Kinematics (QUICK) on quadrilateral cells, while the second-order upwind scheme (2UPW) is employed on triangular

cells.

As far as the aeroelastic transfer function identification is concerned, the motion-induced aeroelastic forces can be

expressed according to the Scanlan and Tomko model, reported in Simiu and Scanlan (1996):

Lae ¼
1

2
rU2B

1

Ur
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1

Ur

� �
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and

Mae ¼
1

2
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1

Ur
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, (13)

where Lae and Mae are the lift force and the pitching moment evaluated at the pole Oð0:5B; 0Þ, r the air density,

U the incoming flow velocity, B the obstacle chord, Ur the reduced velocity and z and y are the heave and pitch

components of the displacement of pole O, respectively (Fig. 3). The coefficients H	i ð1=UrÞ and A	i ð1=UrÞ are called

flutter derivatives.

In this paper, the flat plate flutter derivatives are evaluated through the quasi-indicial approach introduced by

Fransos and Bruno (2006). The unsteady flow-field around the flat plate, subject to a smoothed ramp motion, is

numerically computed and the unsteady forces acting on the plate itself are obtained. The hypothesis of aeroelastic

system linearity allows the inputs and the outputs of the system itself to be decomposed through a frequency analysis.

This decomposition leads to the identification of the flutter derivatives at each frequency (i.e., each reduced velocity) for

which the frequency content of the input is sufficiently high. The approach results in a very efficient algorithm that

allows the identification of the flutter derivatives in the whole reduced velocity range of interest through only a single

computational flow-field evaluation for each degree of freedom.
4. Stochastic characterisation of the steady flow around the motionless plate

The stochastic characterisation of the steady flow around the motionless plate focuses on both the drag coefficient

and flow field quantities. The former has been accounted for as an output random variable in two sensitivity studies,

both related to the choice of the collocation nodes (block 4 in the gPC flowchart in Fig. 1).

4.1. Sensitivity analysis to the interpolation polynomial degree

The single input random variable retained in the following analysis is the Reynolds number Y ¼ Re ¼ UB=n, where n
is the kinematic air viscosity and the chord value is set equal to B ¼ 0:1m. Hence, the Reynolds number depends in turn
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on the random variable U, i.e., the incoming mean wind speed, defined on the probability space ðO;F;PÞ. The law of U

is derived from statistics arguments based on on-site measurements of the wind velocity at Schipol, The Netherlands

(Troen and Petersen, 1989). The Y ¼ Re Weibull(a,b) PDF

rðyÞ ¼ ba�bðyÞb�1 expð�ðy=aÞbÞ; a ¼ 5:6; b ¼ 1:83, (14)

best fits the experimental data. Its support is I ¼ ½0;þ1Þ, but the Cumulative Distribution Function (CDF) reaches the

value CDF ¼ 0:99 already at Re ¼ 8:9� 104, as shown in Fig. 4(a). Employing a gPC expansion on the whole support

of the input PDF could lead to placing many collocation points in the tail, if a high order gPC is employed. The use of a

ME-gPC approach (Wan and Karniadakis, 2006b) prevents this from happening and allows a low order quadrature

rule to be fixed in the tail and the use, for instance, of a nested family of quadrature rules in the interval of greatest

probability content in order to obtain subsequent levels of approximation. The partition

I ¼ ½0;þ1Þ ¼ ½0; 8:9� 104� [ ½8:9� 104;þ1Þ ¼ J1 [ J2

is used in the following. One conditional PDF is therefore associated to each of the input random variables Y ð1Þ and

Y ð2Þ in the two subdomains, as in Eq. (10).

A family of orthogonal polynomials exists in both subintervals, with respect to the corresponding conditional PDF.

Hence, Gaussian and quasi-Gaussian quadrature formulas can be constructed with respect to the weight function

defined by the PDF (Gautschi, 2004). A family of nested Gauss–Patterson rules is associated to the subinterval B1. The

computation of the 3-point, 7-point and 15-point rules is performed in quadruple precision (Patterson, 1989, Fig. 4(b)).

Stability issues with Patterson’s algorithm are highlighted when passing to the higher order rules. A 2-point Gauss

formula is employed in the second subinterval B2. Note that all the nodes lie in the 10oReo5� 105 range, which

corresponds to a laminar flow.

Local gPC approximations are introduced in both subintervals in terms of PC interpolant IMZðyÞ ¼ Z̃M ðyÞ, where

ZðyÞ is the generic output random variable of interest, according to Section 2. Here, the drag coefficient CD is taken as

the output random variable of the problem. Each realisation, corresponding to a quadrature node, is given by the

numerical simulation of the steady flow-field around the motionless plate and the subsequent integration which leads to

the resulting force acting on the plate. When local approximations are obtained in each of the stochastic subdomains B1

and B2, a global approximation immediately follows.

Fig. 5(a) shows the PC interpolation of the CD computed values for three different levels of approximation. It should

be noticed that the ME-gPC interpolants are defined over the whole stochastic domain I. These are possibly

discontinuous polynomials composed of one of the IMCDðy
ð1ÞÞ interpolants in the Gauss–Patterson quadrature nodes

over the B1 subdomain and by the 2-point B2CDðy
ð2ÞÞ interpolant in the two Gauss quadrature nodes over the
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Fig. 5. (a) Drag coefficient PC interpolation and (b) approximate PDF.

Table 1

Moments and fractiles.

Mean Variance 0.99-percentile

3 1:763� 10�02 3:323� 10�05 3:122� 10�02

7 1:813� 10�02 6:312� 10�05 5:051� 10�02

15 1:824� 10�02 7:832� 10�05 5:411� 10�02
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B2 subdomain. The increasing precision of the higher order Gauss–Patterson formulas is highlighted, showing the need

for a relatively large number of collocation nodes. For such a reason, the use of nested quadrature rules could be

profitable, as they offer the opportunity of estimating the obtained accuracy with the addition of a sufficiently small

number of nodes.

Similar considerations can be made about the approximate PDFs that result from the ME-gPC interpolants

(Fig. 5(b)): the 3-point Gauss–Patterson rule leads to a poor approximation of the PDF over the whole CD range. In

particular, an inadequate description of the PDF tail is obtained and, in turn, an underestimation of the highest

percentiles. The 7-point and 15-point rules give approximations which are much closer to each other, and this is an

index of a satisfactory convergence of the stochastic solution procedure. The presence of very thin peaks is not related

to a physical multi-modality, but to small oscillations in the interpolant polynomial due to its high order and to the

statistical PDF estimation method. These peaks should be considered more as numerical approximation errors.

Table 1 shows the first two approximate statistical moments (mean and variance) and the approximate value of

the 0:99-percentile for the three different levels of approximation. These numerical values are obviously related to

the approximate PDF and they are important in that they represent the main final stochastic design parameters that

engineers can read from the stochastic analysis procedure. Once again, large differences can be noticed between

the 3-point and the 7-point approximations, while the latter and the 15-point approximation are much closer (less than

7%). It follows that a sufficient level of approximation has been reached and the 15-point interpolation in the main

probability subdomain is retained as the approximation level in the following sections.
4.2. Sensitivity analysis to large gradients in low probability density regions

Fig. 5(a) shows that the experimental data (Schaaf and Sherman, 1954; Dickinson and Gotz, 1993; Sunada et al.,

1997; Sun and Boyd, 2004) in the Reo400 region are badly fitted by the proposed ME-gPC interpolation. This is
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Fig. 6. (a) Weibull PDF for Re and (b) corresponding ME-gPC quadrature nodes.

Fig. 7. (a) Drag coefficient PC interpolation and (b) approximate PDF.
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not surprising, because this region contains a change in the physical regime, as already pointed out by Bruno and

Fransos (2008). At the same time, the probability that the input random variable Re is in that region is only 2:3� 10�4.

The aim of this section is to evaluate the effect of an improved approximation in this region on the output quantities of

interest.

Let us introduce a partition of the stochastic domain I into three subdomains, in an analogous manner to what was

done in Section 4.1. Here, we have I ¼ ½0; 4� 102� [ ½4� 102; 8:9� 104� [ ½8:9� 104;þ1Þ ¼ J 01 [ J 02 [ J 03, as shown in

Fig. 6(a). This new stochastic domain partition leads to a three-element ME-gPC approximation (3-el.). In the J 02
interval, i.e., the subdomain corresponding to the large amount of probability density, a nested family of

Gauss–Patterson quadrature rules is employed. The 15-point rule is retained for comparison with the above two-

element (2-el.) ME-gPC approximation. The same two-point Gauss rule as before is employed in the right tail, i.e., J 03.

A five-point Gauss rule is introduced in the left tail, to better fit the data in this region. A comparison of the two and

three-element collocation node sets is given in Fig. 6(b). Gauss and Gauss–Patterson optimality is given by the fact that

their nodes are distributed according to the weight function of the integral they are intended to approximate: this
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Table 2

Moments and fractiles.

Mean Variance 0.99-percentile

2-Elements 1:824� 10�02 7:832� 10�05 5:411� 10�02

3-Elements 1:824� 10�02 8:518� 10�05 5:329� 10�02
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consideration, along with the similar density content of J1 and J 02, makes the very slight difference between the

Gauss–Patterson nodes in those intervals obvious.

The corresponding ME-gPC interpolation of CD is given in Fig. 7(a). The discontinuous nature of the piece-wise

polynomial interpolation is shown by the three-element interpolant behaviour. The three different polynomials

give a good fitting of the experimental and computational data in all the regimes in this case. This better inter-

polation, however, does not result in a significantly different CD stochastic characterisation. The approximate PDFs

of the two- and three-element cases are plotted in Fig. 7(b) to support this statement. The resulting PDFs are very

similar, as the CD values corresponding to the highest probability lie in the range corresponding to the Gauss–Patterson

related regions. Similarly, the two first statistical moments (mean and variance) and the 0:99-percentile, which

are shown in Table 2, do not significantly vary between the two- and three-element approximations. The two-

element ME-gPC is therefore retained in the following for the stochastic characterisation of other output quantities of

interest.
4.3. Stochastic description of the flow field

The drag coefficient CD does not completely characterise the steady flow-field around the motionless plate.

Other physical quantities can be chosen as output random variables to complete the stochastic description of the

flow-field. Among all the possible choices, the friction coefficient Cf along the lateral wall of the plate and the

horizontal velocity ux in the plate wake are considered in the following, analogously to what was done in Bruno and

Fransos (2008).

An alternative representation of the stochastic output, the boxplot representation, may be preferred when dealing

with stochastic outputs that depend on variables other than the stochastic ones (for instance space, as in this case).

A statistical sample of the values of the output random variables at given points in the physical space is obtained

through random number generation of the gPC basis random variables. The plot of the lower quartile, median, and

upper quartile values, along with two lines posed 1:5 times the interquartile range (difference between the third and the

first quartile) above and below the upper and lower quartile, respectively, can then be obtained from each of these

samples.

A boxplot of the Cf at some points along the upper surface of the plate is given in Fig. 8(a). The deterministic

Cf distributions at Re ¼ 10 and 105 are plotted for reference. The mean value has a trend versus x=B analogous to the

deterministic spatial profiles. The Cf mean value distribution is much closer to the high Re deterministic distribution

than to the low Re one: this reflects the Re input random variable PDF. The higher Cf moments are very similar all

along the surface: for instance, the variance varies along the lateral surface in the ½7:7� 10�06; 4:6� 10�05� range.

Hence, the approximate PDF at x=B ¼ 0:5, i.e., at mid-plate, is chosen as representative in Fig. 8(b). Its shape is close to

the Weibull PDF of the random input: this implies a strong nonsymmetry; in fact, the average of the skewness values

along the surface is equal to 8:6987.
The horizontal velocity ux along the z=B ¼ 0 line in the wake is also stochastically represented through a boxplot in

Fig. 8(c). The profile of the mean value distribution is close to the classical Goldstein solution [see, e.g., Schlichting

(1979)], which is plotted here for reference. The variance is shown to rapidly decrease moving downstream: this is due to

the fact that, in an analogous manner to the deterministic analysis in Bruno and Fransos (2008), the Re sensitivity of the

boundary layer thickness locally affects the near wake velocity defect, while the Re sensitivity strongly decays at a

distance far downwind. The ux boxplot representation also suggests a more symmetrical statistical distribution than the

Cf one all along the wake. This is confirmed by a much lower value of the skewness, whose average along x=B is now

equal to 1.8706. Hence, the PDF profile is much closer to a Gaussian one; the approximate PDF at x=B ¼ 1:5 is plotted
in Fig. 8(d) as an example. Once again, the oscillations in the resulting PDF around ux=U ¼ 0:67 should be ascribed to

small oscillations due to the high order of the interpolant polynomial.
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Fig. 8. Friction coefficient at the upper surface: (a) boxplot stochastic representation and (b) approximate PDF at x=B ¼ 0:5;
(c) horizontal velocity at y=B ¼ 0.
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5. Stochastic characterisation of the unsteady flow around the moving plate

The flutter derivatives, at different fixed reduced velocities Ur, are taken as the output random variables of the

problem in this section. From the mathematical point of view, it is worth pointing out that, even though the black-box

solver proceeds to the flutter identification through the frequency analysis of time-dependent deterministic forces, the

obtained flutter derivatives are not time-dependent. Thus, the subsequent stochastic characterisation of the flutter

derivatives does not require the gPC description of time-dependent random processes and hence does not involve long

term integration, which is well known as a critical point (Wan and Karniadakis, 2006a).
5.1. Sensitivity analysis to the interpolation polynomial degree

The two-element ME-gPC approximation is performed for the complete set of flutter derivatives in the 0 
 Ur 
 12

range of interest. Three different interpolants I3, I7 and I15 are taken into account in the J1 element to evaluate the

possible need for a high level of approximation, in analogy to what has been done in Section 4.1. Fig. 9 shows the three

interpolants for each flutter derivative at Ur ¼ 2. The increasing precision of the higher order Gauss–Patterson

formulas is highlighted once again, even though small oscillations appear in proximity to the J1 subdomain upper

bound for certain derivatives (e.g., H1 and A2), due to the high polynomial degree. As regards the computational costs,
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Fig. 9. ME-gPC interpolation for the flutter derivatives at Ur ¼ 2.
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Fig. 10. PC interpolation for the flutter derivatives at different Ur.
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a relatively large number of collocation nodes is also needed in the unsteady case, and, in addition, the evaluation cost

of a single collocation node is much higher than in the steady case: the use of nested quadrature rules is therefore

crucial, if subsequent levels of approximation are required.

The A2 and H1 flutter derivatives mainly contribute to the aeroelastic damping and are clearly recognised as the most

significant ones in the characterisation of the aeroelastic system. Their 15-point interpolants are plotted in Fig. 10 at a

large number of reduced velocities, showing a good overall description of the derivatives as functions of Re.

It is worth pointing out that the A1 and H3 derivatives show a different trend in the Re range roughly corresponding

to the J2 element at Ur ¼ 2 (Fig. 9). The same happens for other derivatives at higher reduced velocities (for instance A2

at Ur ¼ 10; 12 in Fig. 10). This change in the derivative trend can be ascribed to a different flow regime in the wake. In

fact, the plate motion causes the shedding of a vortex from the plate trailing edge, which represents a perturbation of

the flow in the wake. Bearing in mind that the Re effects on such a perturbation can be much more significant at a

distance far downstream in the wake due to diffusion, it can have more effect on the long nondimensional wavelengths l
or, in other terms, the high reduced velocities Ur ¼ UB=f ¼ Ul. This fact could explain why, for instance, the A2

derivative in Fig. 10 only reveals a change in trend at Ur � 10. Finally, the same phenomenon is not shown by the

computational simulation performed for the motionless plate: no flow perturbations are introduced in this case, due to

the absence of motion of the obstacle, and the only expected change in the flow regime is the laminar to turbulent

transition along the plate surface; it is well known that transition occurs for this flow at a higher local Re value than the

one corresponding to the last considered quadrature node.
5.2. Stochastic flutter derivatives

Once the interpolation has been performed for each flutter derivative at each reduced velocity of interest, the

statistical representation of the derivatives is accomplished. Once again, three graphical representations can be made.

Bearing in mind that the flutter derivatives do not depend only on the input random variable Y, but also on the

(deterministic) reduced velocity Ur, Fig. 11 diagrams the boxplot representation for each derivative at six Ur samples

and compares the obtained stochastic solution to the well-known deterministic Theodorsen solution. A more compact,

yet incomplete, description of the derivative statistics is provided, in Fig. 12, by the mean value and variance evolutions

versus Ur. Finally, Fig. 13 details the PDF at the sampled Ur values referring to the most significant derivatives, i.e., A2

and H1.

Two main considerations can be drawn:
(i)
 the Theodorsen solution, which is analytically obtained under the assumption of inviscid flow, always lies in

proximity to the PDF tail (Fig. 11), that is, it is approached at high Re values as expected;
(ii)
 the higher the reduced velocity, the higher the variance of each derivative, except for H4. A closer link between the

derivative statistics and the fluid flow phenomena can be established bearing in mind that high Ur values in the

frequency domain correspond to high values of the nondimensional unit s ¼ tU=B in the time or space domain: in
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Fig. 11. Boxplots of the approximate flutter derivatives at different Ur. The solid line is the Theodorsen deterministic solution.
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Fig. 12. Moments of the approximate flutter derivatives at different Ur.
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other words, s can be viewed as a measure of the distance travelled by the vortex along the wake, or of the vortex

travel time. Hence, the higher Ur, the longer the travel time and the stronger the diffusive effects involved by the

kinematic viscosity, that is, by the Re effects.
The stochastic characterisation of the flutter derivatives allows us to obtain the probability that one of them is

positive at some values of Ur; this probability is plotted in Fig. 14 for A2 and H1. A very low, but not null, probability

is shown: a negative aeroelastic damping is therefore also possible for the flat plate, in contrast with the classical inviscid

Theodorsen theory.

5.3. Computational costs

The combined use of different techniques from both numerical analysis and wind engineering was aimed at

performing a complete stochastic analysis of the aerodynamic and aeroelastic problem with an affordable

computational cost.

In particular, it is worth pointing out that the extraction method proposed for the flutter derivatives in Section 3

allows an efficient stochastic characterisation of the plate aeroelasticity. Only one single deterministic computation is in

fact needed for the realisations of all the flutter derivatives that correspond to a spatial degree of freedom at each Ur

value in the range of interest. This dramatically reduces the computational costs required for a complete stochastic

analysis of the aeroelastic phenomenon. The gain, in terms of the required CPU time, can be observed in Fig. 15, which

shows a comparison between the computational costs related to the harmonic oscillations and the smoothed ramp

methods (Fransos and Bruno, 2006). The cost of the harmonic oscillation method refers to the classical 6-point

sampling of the reduced velocity interval. The cost required for the employment of an accurate 15-point quadrature rule

with the proposed smoothed ramp method is about one-half of that required for the employment of a less accurate

3-point quadrature rule with the harmonic oscillation method.
6. Conclusions

The present paper deals with the uncertainty quantification of the aerodynamic and aeroelastic behaviour of a

streamlined body immersed in a viscous fluid flow. The classical flat plate problem has been addressed to this aim. The

mean flow incoming velocity, and therefore the Reynolds number, has been retained as an input random variable.

A Multi-Element generalised Polynomial Chaos method, along with an efficient deterministic computational

approach, has been proposed to obtain accurate approximations of the output random variables at an affordable cost.

A stochastic characterisation of both the steady flow around the motionless plate and the plate flutter derivatives has

been given, in terms of moments, percentiles, boxplots and approximate PDFs of the desired quantities.

The sensitivity of the resulting random outputs to both the polynomial interpolation degree and the presence of large

gradients in low probability density regions has been investigated. The former study shows the need for a moderately
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Fig. 13. PC-approximate PDFs for the flutter derivatives at different Ur.
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Fig. 14. Positive value probability for A2 and H1.
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Fig. 15. Computational costs required for the harmonic oscillation and the smoothed ramp methods.
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high number of collocation nodes and highlights the importance of an efficient deterministic method to evaluate the

single realisations, in order to reduce the required computational costs. The latter sensitivity investigation shows that a

good point-wise description of the stochastic solution in the low probability regions is not necessary for an accurate

stochastic output description.

The overall resulting computational costs are affordable for real world applications. The obtained results highlight a

nonzero probability of A2 and H1 of being positive, showing that a negative aeroelastic damping is possible for the flat

plate, which is in contrast with the classical inviscid theory.
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